login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171634
Number of compositions of n such that the number of parts is divisible by the greatest part.
2
1, 1, 3, 2, 8, 13, 21, 38, 89, 173, 302, 545, 1109, 2309, 4564, 8601, 16188, 31365, 62518, 125813, 251119, 493123, 956437, 1854281, 3633938, 7218166, 14444539, 28868203, 57300450, 112921744, 221760513, 436117749, 861764899, 1711773936
OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..715 (terms 1..250 from Alois P. Heinz)
FORMULA
G.f.: Sum_{n>=0} Sum_{d|n} ((x^(d+1)-x)^n-(x^d-x)^n)/(x-1)^n.
MAPLE
b:= proc(n, t, g) option remember; `if`(n=0, `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n, 0, 0): seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
MATHEMATICA
b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[t, g] == 0, 1, 0], Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];
a[n_] := b[n, 0, 0];
Array[a, 40] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A373288 A301903 A165660 * A107300 A285787 A047946
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 13 2009
EXTENSIONS
More terms from Alois P. Heinz, Dec 15 2009
STATUS
approved