Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 11 2020 07:48:46
%S 1,1,3,2,8,13,21,38,89,173,302,545,1109,2309,4564,8601,16188,31365,
%T 62518,125813,251119,493123,956437,1854281,3633938,7218166,14444539,
%U 28868203,57300450,112921744,221760513,436117749,861764899,1711773936
%N Number of compositions of n such that the number of parts is divisible by the greatest part.
%H Vaclav Kotesovec, <a href="/A171634/b171634.txt">Table of n, a(n) for n = 1..715</a> (terms 1..250 from Alois P. Heinz)
%F G.f.: Sum_{n>=0} Sum_{d|n} ((x^(d+1)-x)^n-(x^d-x)^n)/(x-1)^n.
%p b:= proc(n,t,g) option remember; `if`(n=0, `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n,0,0): seq(a(n), n=1..40); # _Alois P. Heinz_, Dec 15 2009
%t b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[t, g] == 0, 1, 0], Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];
%t a[n_] := b[n, 0, 0];
%t Array[a, 40] (* _Jean-François Alcover_, Nov 11 2020, after _Alois P. Heinz_ *)
%Y Cf. A168659, A171632.
%K easy,nonn
%O 1,3
%A _Vladeta Jovovic_, Dec 13 2009
%E More terms from _Alois P. Heinz_, Dec 15 2009