login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171632
Number of compositions of n such that the greatest part is divisible by the number of parts.
3
1, 1, 3, 2, 6, 9, 15, 22, 41, 68, 118, 199, 337, 571, 982, 1677, 2860, 4866, 8284, 14084, 23911, 40544, 68679, 116172, 196249, 331096, 557927, 939008, 1578450, 2650167, 4444505, 7445658, 12460248, 20830822, 34790302, 58049613, 96771364, 161182065
OFFSET
1,3
COMMENTS
G.f.: Sum_{n>=0} Sum_{d|n} ((x^(n+1)-x)^d-(x^n-x)^d)/(x-1)^d.
LINKS
MAPLE
b:= proc(n, t, g) option remember; `if` (n=0, `if` (irem(g, t)=0, 1, 0), add (b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n, 0, 0): seq (a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
MATHEMATICA
b[n_, t_, g_] := b[n, t, g] = If[n == 0, If[Mod[g, t] == 0, 1, 0],
Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];
a[n_] := b[n, 0, 0];
Table [a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 11 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A168659.
Sequence in context: A210601 A197493 A300070 * A245609 A365789 A072765
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 13 2009
EXTENSIONS
More terms from Alois P. Heinz, Dec 15 2009
STATUS
approved