login
A167688
Number of ways of factoring n with all factors greater than 1 (a(1)=1 by convention) minus number of nonprime divisors of n.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 9, 0, 0, 0, 2, 0, 0, 0, 1, 0
OFFSET
1,32
FORMULA
a(n) = A001055(n) - A033273(n).
MATHEMATICA
c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors@ n, 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length@ d}]]; Array[c[#, #] - DivisorSum[#, 1 &, ! PrimeQ@ # &] &, 105] (* Michael De Vlieger, Jul 12 2017, after Dean Hickerson at A001055 *)
PROG
(PARI)
fcnt(n, m) = {local(s); s=0; if(n == 1, s=1, fordiv(n, d, if((d > 1) && (d <= m), s=s+fcnt(n/d, d)))); s};
A001055(n) = fcnt(n, n); \\ This function from Michael B. Porter, Oct 29 2009
A167688(n) = A001055(n) - (numdiv(n) - omega(n)); \\ Antti Karttunen, Jul 12 2017
CROSSREFS
Sequence in context: A227344 A130207 A325433 * A376679 A083914 A083891
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(64) and a(80) corrected by R. J. Mathar, May 30 2010
STATUS
approved