login
A325433
Triangle T read by rows: T(n,k) is the number of partitions of n in which k is the least integer that is not a part and there are more parts > k than there are < k (n >= k > 0).
4
0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, 0, 0, 0, 0, 0, 0, 0, 14, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
LINKS
George E. Andrews and Mircea Merca, The truncated pentagonal number theorem, Journal of Combinatorial Theory, Series A, Volume 119, Issue 8, 2012, Pages 1639-1643.
K. Banerjee and M. G. Dastidar, Inequalities for the partition function arising from truncated theta series, RISC Report Series No. 22-20, 2023. See Theorem 1.1 at p. 2.
FORMULA
T(n,k) = (-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(3*j + 1)/2) - p(n - j*(3*j + 5)/2 - 1)), where p(n) = A000041(n) is the number of partitions of n (see Theorem 1.1 in Andrews and Merca).
1st column: T(n,1) = A002865(n) for n > 0.
EXAMPLE
T(9,2) = 3 from 6 + 3 = 5 + 3 + 1 = 4 + 4 + 1 = 3 + 3 + 3.
The triangle T(n, k) begins
n\k| 1 2 3 4 5 6 7 8 9
---+------------------------------------
1 | 0
2 | 1 0
3 | 1 0 0
4 | 2 0 0 0
5 | 2 0 0 0 0
6 | 4 0 0 0 0 0
7 | 4 1 0 0 0 0 0
8 | 7 1 0 0 0 0 0 0
9 | 8 2 0 0 0 0 0 0 0
...
MATHEMATICA
T[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j*(3*j+1)/2]-PartitionsP[n-j*(3*j+5)/2-1]), {j, 0, k-1}]; Flatten[Table[T[n, k], {n, 1, 15}, {k, 1, n}]]
PROG
(PARI)
T(n, k) = (-1)^(k-1)*sum(j=0, k-1, (-1)^j*(numbpart(n-j*(3*j+1)/2)-numbpart(n-j*(3*j+5)/2-1)));
tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n, k), ", ")); print);
tabl(10) \\ yields sequence in triangular form
CROSSREFS
Cf. A000041, A002865, A325434 (row sums).
Sequence in context: A280129 A227344 A130207 * A167688 A376679 A083914
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Apr 27 2019
STATUS
approved