login
A163842
Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869).
5
1, 7, 6, 43, 36, 30, 249, 206, 170, 140, 1395, 1146, 940, 770, 630, 7653, 6258, 5112, 4172, 3402, 2772, 41381, 33728, 27470, 22358, 18186, 14784, 12012, 221399, 180018, 146290, 118820, 96462, 78276, 63492
OFFSET
0,2
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let
T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i+1)$
where i$ denotes the swinging factorial of i (A056040).
EXAMPLE
1
7, 6
43, 36, 30
249, 206, 170, 140
1395, 1146, 940, 770, 630
7653, 6258, 5112, 4172, 3402, 2772
41381, 33728, 27470, 22358, 18186, 14784, 12012
MAPLE
Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
a := n -> SumTria(k->swing(2*k+1), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved