login
A070425
a(n) = 7^n mod 43.
2
1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36, 37, 1, 7, 6, 42, 36
OFFSET
0,2
COMMENTS
Sequence is periodic with length 6. Since a(21) = 42 (or -1), 43 is prime in Z[sqrt(7)]. - Alonso del Arte, Oct 12 2012
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n - 1) - a(n - 3) + a(n - 4).
G..f: ( -1 - 6*x + x^2 - 37*x^3 ) / ( (x - 1)*(1 + x)*(x^2 - x + 1) ). (End)
a(n) = a(n-6). - G. C. Greubel, Mar 22 2016
MATHEMATICA
PowerMod[7, Range[0, 74], 43] (* Alonso del Arte, Oct 12 2012 *)
PROG
(Sage) [power_mod(7, n, 43) for n in range(0, 83)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(7, 43)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(7, n, 43): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A322049 A163260 A073112 * A163842 A328697 A288245
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved