login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343159
(0,1)-array describing two-dimensional paper-folding construction of A342759, read by upward antidiagonals.
0
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1
OFFSET
1
REFERENCES
Rémy Sigrist and N. J. A. Sloane, Two-Dimensional Paper-Folding, Manuscript in preparation, May 2021.
EXAMPLE
The array (which starts in the bottom left corner) begins:
# ....
# [. 0 . 0 . 1 . 1 . 0 . 1 . 1 .]
# [0 . 1 . 0 . 1 . 0 . 1 . 0 . 1]
# [. 0 . 0 . 1 . 1 . 0 . 1 . 1 .]
# [0 . 0 . 1 . 1 . 0 . 0 . 1 . 1]
# [. 1 . 0 . 0 . 1 . 1 . 1 . 0 .]
# [1 . 0 . 1 . 0 . 1 . 0 . 1 . 0]
# [. 1 . 0 . 0 . 1 . 1 . 1 . 0 .]
# [1 . 1 . 1 . 1 . 0 . 0 . 0 . 0]
# [. 0 . 1 . 1 . 1 . 0 . 0 . 1 .]
# [0 . 1 . 0 . 1 . 0 . 1 . 0 . 1]
# [. 0 . 1 . 1 . 1 . 0 . 0 . 1 .]
# [1 . 1 . 0 . 0 . 1 . 1 . 0 . 0]
# [. 1 . 1 . 0 . 1 . 1 . 0 . 0 .]
# [1 . 0 . 1 . 0 . 1 . 0 . 1 . 0]
# [. 1 . 1 . 0 . 1 . 1 . 0 . 0 .]
The first few antidiagonals are:
[1, 1]
[1, 0, 1, 1]
[0, 1, 1, 1, 0, 0]
[1, 0, 0, 0, 1, 1, 0, 1]
[1, 1, 1, 0, 1, 0, 1, 1, 1, 1]
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0]
[0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0]
...
CROSSREFS
Cf. A342759.
Sequence in context: A163810 A163804 A181653 * A155091 A145362 A261092
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist and N. J. A. Sloane, Apr 12 2021.
STATUS
approved