login
A162329
Sum of all parts of the partitions of n, minus sigma(n).
2
0, 1, 5, 13, 29, 54, 97, 161, 257, 402, 604, 896, 1299, 1866, 2616, 3665, 5031, 6891, 9290, 12498, 16600, 22008, 28841, 37740, 48919, 63294, 81230, 104048, 132355, 168048, 212070, 267105, 334671, 418486, 520857, 647081, 800531, 988510, 1216159, 1493430
OFFSET
1,3
COMMENTS
Apart from the offset the same as A086732.
Sum of all parts of all partitions of n minus the total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 24 2014
FORMULA
a(n) = A066186(n) - A000203(n).
EXAMPLE
a(1) = 1 - 1 = 0;
a(2) = 4 - 3 = 1;
a(3) = 9 - 4 = 5;
a(6) = 66 - 12 = 54.
MAPLE
A066186 := proc(n) n*combinat[numbpart](n) ; end:
A000203 := proc(n) numtheory[sigma](n) ; end:
A162329 := proc(n) A066186(n)-A000203(n) ; end: seq(A162329(n), n=1..80) ; # R. J. Mathar, Aug 14 2009
MATHEMATICA
Table[Total[Flatten[IntegerPartitions[n]]]-DivisorSigma[1, n], {n, 40}] (* Harvey P. Dale, Mar 21 2013 *)
PROG
(PARI) a(n) = n*numbpart(n) - sigma(n); \\ Michel Marcus, Mar 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(6), a(8), a(24) corrected by R. J. Mathar, Aug 14 2009
STATUS
approved