login
A162332
Numbers k such that k^2 is an anagram of a triangular number.
1
1, 6, 19, 33, 35, 37, 44, 48, 51, 71, 72, 75, 90, 91, 99, 102, 107, 108, 111, 116, 120, 125, 127, 129, 134, 135, 147, 150, 152, 153, 154, 156, 159, 163, 179, 181, 186, 188, 189, 190, 198, 199, 201, 204, 210, 213, 216, 219, 224, 225, 226, 228, 231, 244, 251, 255
OFFSET
1,2
COMMENTS
37 is in the sequence because 37^2 = 1369 and 1369 is an anagram of 3916 = (88 * 89)/2 = T(88).
71 is in the sequence because 71^2 = 5041 and 5041 is an anagram of 1540 = (55 * 56)/2 = T(55).
LINKS
MATHEMATICA
n2tnQ[n_]:=Module[{cc=Select[FromDigits/@Permutations[IntegerDigits[n^2]], IntegerQ[ (Sqrt[8#+1]-1)/2]&]}, Length[Select[cc, IntegerLength[#] == IntegerLength[n^2]&]]>0]; Select[Range[300], n2tnQ] (* Harvey P. Dale, Aug 17 2012 *)
CROSSREFS
Sequence in context: A277402 A092098 A186113 * A063233 A063147 A031014
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 01 2009
STATUS
approved