login
A161987
Number of reduced words of length n in the Weyl group B_32.
0
1, 32, 527, 5952, 51831, 370976, 2271896, 12237280, 59146604, 260441632, 1057250877, 3994502272, 14156055636, 47361532160, 150411609649, 455543049760, 1321024921186, 3680779823776, 9884216117666, 25650056954016
OFFSET
0,2
COMMENTS
Computed with MAGMA using commands similar to those used to compute A161409.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
FORMULA
G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
CROSSREFS
Sequence in context: A125489 A084486 A161640 * A162379 A162739 A010984
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Nov 30 2009
STATUS
approved