login
Number of reduced words of length n in the Weyl group B_32.
0

%I #5 Jul 19 2015 10:23:51

%S 1,32,527,5952,51831,370976,2271896,12237280,59146604,260441632,

%T 1057250877,3994502272,14156055636,47361532160,150411609649,

%U 455543049760,1321024921186,3680779823776,9884216117666,25650056954016

%N Number of reduced words of length n in the Weyl group B_32.

%C Computed with MAGMA using commands similar to those used to compute A161409.

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

%F G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Nov 30 2009