login
A162739
G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.
1
1, 32, 528, 5983, 52328, 376464, 2318799, 12567864, 61146228, 271108112, 1108426792, 4218660636, 15062914600, 50781806768, 162529249836, 496126643401, 1450195983290, 4073269588704, 11027181052792, 28850795300030
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=32: seq(coeff(series(mul((1-x^(3*i)), i=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[32]))/(1-x)^32, {x, 0, 50}], x] (* G. C. Greubel, Jul 07 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 32, (1-x^(3*k)))/(1-x)^32; Vec(A) \\ G. C. Greubel, Jul 07 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..32]])/(1-x)^32; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
CROSSREFS
Sequence in context: A161640 A161987 A162379 * A010984 A022596 A130609
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved