login
A065177
Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
7
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
OFFSET
0,8
LINKS
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
Juggling Information Service, Site Swap FAQs
FORMULA
Row n is the inverse Euler transform of j-> n^(j-1). - Alois P. Heinz, Jun 23 2018
EXAMPLE
Upper left corner starts as:
1, 0, 0, 0, 0, ...
1, 1, 2, 3, 6, ...
1, 2, 6, 15, 42, ...
1, 3, 12, 42, 156, ...
1, 4, 20, 90, 420, ...
...
MAPLE
[seq(DistSS_table(j), j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
with(numtheory); DistSS := proc(n, b) local d, s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
MATHEMATICA
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
CROSSREFS
Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.
Column 1: A002378, column 2: A059270.
Main diagonal gives A306173.
Cf. also A065167. trinv given at A054425.
Sequence in context: A155161 A185937 A292086 * A064044 A213980 A349373
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved