OFFSET
1,1
COMMENTS
More precisely: Take the sum of prime factors of the n-th composite number A002808(n), with repetition (e.g., 72 = 2^3*3^2 => 2+2+2+3+3). If the sum is prime, list it here; if not, don't list it and skip over to the next composite number. - M. F. Hasler, May 02 2015
The count of the same numbers is A168470. - Gionata Neri, Apr 26 2015
LINKS
Karl Hovekamp, Table of n, a(n) for n=1,...,12285.
Karl Hovekamp, Table of n, a(n), source, factors for n=1,...,12285.
EXAMPLE
MAPLE
N:= 1000: # to get a(1) to a(N)
count:= 0:
for x from 2 while count < N do
if not isprime(x) then
y:= add(f[1]*f[2], f=ifactors(x)[2]);
if isprime(y) then
count:= count+1;
A[count]:= y;
fi
fi
od;
seq(A[i], i=1..N); # Robert Israel, Apr 26 2015
MATHEMATICA
lim = 410; s = Select[Range@ lim, CompositeQ]; f[n_] := Plus @@ (Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n]); Select[f /@ s, PrimeQ] (* Michael De Vlieger, Apr 26 2015 *)
PROG
(PARI) forcomposite(c=1, 999, isprime(s=(s=factor(c))[, 1]~*s[, 2])&&print1(s", ")) \\ M. F. Hasler, May 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Jan 04 2009
EXTENSIONS
Corrected and edited by Karl Hovekamp, Dec 05 2009
STATUS
approved