login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153978
a(n) = n*(n-1)*(n+1)*(3*n-2)/12.
5
0, 2, 14, 50, 130, 280, 532, 924, 1500, 2310, 3410, 4862, 6734, 9100, 12040, 15640, 19992, 25194, 31350, 38570, 46970, 56672, 67804, 80500, 94900, 111150, 129402, 149814, 172550, 197780, 225680, 256432, 290224, 327250, 367710, 411810, 459762
OFFSET
1,2
COMMENTS
Partial sums of A011379.
Antidiagonal sums of the convolution array A213819. - Clark Kimberling, Jul 04 2012
FORMULA
a(n) = 2 * A001296(n-1) = (n-1)*n*(n+1)*(3*n-2)/12 (n>0). - Bruno Berselli, Apr 21 2010
a(n) = Sum_{i=1..n-1} binomial(i+1,i)*i^2. - Enrique Pérez Herrero, Jun 28 2014
G.f.: 2*x^2*(2*x+1) / (1 - x)^5. - Colin Barker, Jun 28 2014
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Vincenzo Librandi, Jun 30 2014
a(n) = Sum_{k=1..n-1}k*((n-1)*n/2 + k) for n > 1. - J. M. Bergot, Feb 16 2018
From Amiram Eldar, Aug 23 2022: (Start)
Sum_{n>=2} 1/a(n) = 141/5 - 9*sqrt(3)*Pi/5 - 81*log(3)/5.
Sum_{n>=2} (-1)^n/a(n) = 18*sqrt(3)*Pi/5 + 48*log(2)/5 - 129/5. (End)
MATHEMATICA
a[n_]:=n^2; b[n_]:=n^3; c[n_]:=b[n]+a[n]; lst={}; s=0; Do[AppendTo[lst, s+=c[n]], {n, 0, 6!}]; lst
With[{r=Range[0, 50]}, Accumulate[r^2+r^3]] (* Harvey P. Dale, Jan 16 2011 *)
Rest[CoefficientList[Series[-2 x^2 * (2 x + 1)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 30 2014 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 2, 14, 50, 130}, 25] (* G. C. Greubel, Sep 01 2016 *)
PROG
(PARI) concat(0, Vec(-2*x^2*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Jun 28 2014
(PARI) a(n) = n*(n-1)*(n+1)*(3*n-2)/12 \\ Charles R Greathouse IV, Sep 01 2016
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Bruno Berselli, Jun 15 2010
Simpler definition as suggested by Wesley Ivan Hurt, Jun 29 2014
STATUS
approved