login
A028316
Odd elements in the 5-Pascal triangle A028313 that are not 1.
7
5, 7, 7, 19, 19, 9, 27, 27, 9, 65, 65, 11, 101, 101, 11, 57, 147, 231, 231, 147, 57, 13, 69, 69, 13, 273, 273, 15, 355, 855, 855, 355, 15, 111, 451, 2277, 2277, 451, 111, 17, 127, 1661, 3487, 5379, 5379, 3487, 1661, 127, 17, 689, 2223, 11583, 11583, 2223, 689, 19
OFFSET
0,1
COMMENTS
Odd elements of A028314. - G. C. Greubel, Jan 06 2024
LINKS
EXAMPLE
Odd elements of A028313 as an irregular triangle:
5;
7, 7;
19, 19;
9, 27, 27, 9;
65, 65;
11, 101, 101, 11;
57, 147, 231, 231, 147, 57;
...
MATHEMATICA
A028314[n_, k_]:= Binomial[n+2, k+1] +3*Binomial[n, k];
f= Table[A028314[n, k], {n, 0, 100}, {k, 0, n}]//Flatten;
a[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ];
Table[a[n], {n, 0, 150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
PROG
(Magma)
A028314:= func< n, k | Binomial(n+2, k+1) + 3*Binomial(n, k) >;
a:=[A028314(n, k): k in [0..n], n in [0..100]];
[a[n]: n in [1..150] | (a[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
(SageMath)
def A028314(n, k): return binomial(n+2, k+1) + 3*binomial(n, k)
a=flatten([[A028314(n, k) for k in range(n+1)] for n in range(101)])
[a[n] for n in (0..150) if a[n]%2==1] # G. C. Greubel, Jan 06 2024
CROSSREFS
KEYWORD
nonn,tabf,easy
EXTENSIONS
More terms from James A. Sellers
STATUS
approved