login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146892
For definition see comments lines.
3
1, 6, 6, 72, 72, 72, 6, 72, 72, 5184, 6, 5184, 72, 5184, 31104, 5184, 5184, 5184, 2592, 5184, 432, 373248, 36, 373248, 31104, 26873856, 26873856, 26873856, 373248, 31104, 36, 31104, 2239488, 2239488, 1934917632, 26873856, 31104, 2239488
OFFSET
0,2
COMMENTS
Let USigma denote the unitary sigma function, A034448.
As in A146891, let PF_p(n) denote the largest power of the prime p dividing n. PF_2 is A006519, and PF_3 is A038500. Furthermore define PF_1(n)=1.
Extension to multi-prime-indices is done by multiplying the corresponding functions: PF_{p,q,..}(n) = PF_p(n)*PF_q(n)*... An example of this is PF_{2,3} = A065331.
[How to compute c(m)]
Case of Base Primes = {2}{3}
c(0)=2^m, b(0)=2^m
c(n)=c(n-1)/PF_2[USigma[b(n-1)]]*PF_3[USigma[b(n-1)]]
b(n)=USigma[b(n-1)]/ PF_2,3[USigma[b(n-1)]]
IF b(k)=1 THEN END
a(m)=c(k)
Sequence gives a(m)
Factorization of term becomes 2^r*3^s.
MAPLE
A146892 := proc(n) local b, a, k ;
b := [2^n] ;
while op(-1, b) <> 1 do
b := [op(b), A065330(A034448(op(-1, b))) ] ;
od:
a := 2^n ;
for k from 2 to nops(b) do
a := a/ A006519(A034448(op(k-1, b))) *A038500(A034448(op(k-1, b))) ;
od:
a ;
end: # R. J. Mathar, Jun 24 2009
CROSSREFS
Cf. A146891.
Sequence in context: A269888 A269767 A065239 * A347916 A361738 A320824
KEYWORD
nonn,uned
AUTHOR
Yasutoshi Kohmoto, Apr 17 2009
EXTENSIONS
More terms from R. J. Mathar, Jun 24 2009
STATUS
approved