login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141047
Numerators of A091137(n)*T(n,n)/n! where T(i,j)=Integral (x= i.. i+1) x*(x-1)*(x-2)* .. *(x-j+1) dx.
4
1, 3, 23, 55, 1901, 4277, 198721, 434241, 14097247, 30277247, 2132509567, 4527766399, 13064406523627, 27511554976875, 173233498598849, 362555126427073, 192996103681340479, 401972381695456831, 333374427829017307697, 691668239157222107697, 236387355420350878139797
OFFSET
0,2
COMMENTS
Numerators of the main diagonal of the array A091137(j)*T(i,j)/j! where T(i,j)=Integral (x= i.. i+1) x*(x-1)*(x-2)* .. *(x-j+1) dx.
The reduced fractions of the array T(i,j) are shown in A140825, which also describes how the integrand is a generating function of Stirling numbers.
The sequence A027760 plays a role i) in relating to A091137 as described there and
ii) in a(n+1)-A027760(n+1)*a(n)= A002657(n+1), numerators of the diagonal T(n,n+1).
REFERENCES
P. Curtz, Integration numerique des systemes differentiels a conditions initiales. Note 12, Centre de Calcul Scientifique de l' Armement, Arcueil (1969), p. 36.
FORMULA
a(n) = numerator( A091137(n)*T(n,n)/n!) where T(n,n) = sum_{k=0..n} A048994(n,k)*((n+1)^(k+1)-n^(k+1))/(k+1).
MAPLE
T := proc(i, j) local var, k ; var := x ; for k from 1 to j-1 do var := var*(x-k) ; od: int(var, x=i..i+1) ; simplify(A091137(j)*%/j!) ; numer(%) ; end:
A141047 := proc(n) T(n, n) ; end: for n from 0 to 20 do printf("%a, ", A141047(n) ) ; od: # R. J. Mathar, Feb 23 2009
MATHEMATICA
b[n_] := b[n] = (* A091137 *) If[n==0, 1, Product[d, {d, Select[Divisors[n] + 1, PrimeQ]}]*b[n-1]]; T[i_, j_] := Integrate[Product[x-k, {k, 0, j-1}], {x, i, i+1}]; a[n_] := b[n]*T[n, n]/n!; Table[a[n] // Numerator, {n, 0, 20}] (* Jean-François Alcover, Jan 10 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Jul 31 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Feb 23 2009
STATUS
approved