OFFSET
0,2
COMMENTS
Also: The numerators in the j=2 column of the array a(i,j) defined in A140825, where the columns j=0 and j=1 are represented by A000012 and A005408. This could be extended to column j=3: 1, -1, 9, 55, 161, ... The common feature of these sequences derived from a(i,j) is that their j-th differences are constant sequences defined by A091137(j).
a(n) is the set of all k such that 6*k + 6 is a perfect square. - Gary Detlefs, Mar 04 2010
The identity (6*n^2 - 1)^2 - (9*n^2 - 3)*(2*n)^2 = 1 can be written as a(n+1)^2 - A157872(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012
Apart from first term, sequence found by reading the line from 5, in the direction 5, 23, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
From Paul Curtz, Sep 17 2018: (Start)
Terms from center to right in the following spiral:
.
65--63--61--59
/ \
67 31--29--27 57
/ / \ \
69 33 9---7 25 55
/ / / \ \ \
71 35 11 -1===5==23==53==>
/ / / / / /
37 13 1---3 21 51
\ \ / /
39 15--17--19 49
\ /
41--43--45--47 (End)
REFERENCES
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969, 132 pages, pp. 28-36. CCSA, then CELAR. Now DGA Maitrise de l'Information 35131 Bruz.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Leo Tavares, Illustration: Barred Stars.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + 12.
First differences: a(n+1) - a(n) = A017593(n).
G.f.: (1-8*x-5*x^2)/(x-1)^3. - Jaume Oliver Lafont, Aug 30 2009
From Vincenzo Librandi, Feb 05 2012: (Start)
a(n) = a(n-1) + 12*n - 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A033581(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = A032528(2*n) - 1. - Adriano Caroli, Jul 21 2013
For n > 0, a(n) = floor(3/(cosh(1/n) - 1)) = floor(1/(n*sinh(1/n) - 1)); for similar formulas for cosine and sine, see A033581. - Clark Kimberling, Oct 19 2014, corrected by M. F. Hasler, Oct 21 2014
a(-n) = a(n). - Paul Curtz, Sep 17 2018
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(6))*cot(Pi/sqrt(6)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(6))*csc(Pi/sqrt(6)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(6))*csc(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(6))*sin(Pi/sqrt(3))/sqrt(2). (End)
E.g.f.: exp(x)*(6*x^2 + 6*x - 1). - Elmo R. Oliveira, Jan 16 2025
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {-1, 5, 23}, 40] (* Vincenzo Librandi, Feb 05 2012 *)
CoefficientList[Series[(1-8*x-5*x^2)/(x-1)^3 , {x, 0, 40}], x] (* Stefano Spezia, Sep 17 2018 *)
PROG
(PARI) a(n)=6*n^2-1 \\ Charles R Greathouse IV, Jun 01 2011
(Magma) [6*n^2 - 1: n in [0..50]]; // Vincenzo Librandi, Jun 02 2011
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Jul 16 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 06 2008
Better description Ray Chandler, Feb 03 2009
STATUS
approved