OFFSET
1,1
COMMENTS
A generalization of prime Fibonacci numbers (A005478) are the prime hyperfibonacci numbers (primes in A136431). Referring to the array A(k,n) = Apply partial sum operator k times to Fibonacci numbers, we see that every prime occurs in the n=2 column (as it contains every positive integer).
So excluding n=2 and k=0 (A005478) we have the nontrivially prime hyperfibonacci numbers which are not Fibonacci numbers.
Note that this sequence does not indicate multiplicity (e.g., 7 occurs twice in the valid part of the table).
Continuing the table of primes in the examples, from a computation by Joshua Zucker, we have:
k=1: {7, ...} no more through n = 1000.
k=2: {7, 79, 514201, 14930317, 956722025983, 5527939700884681 4660046610375530219, ...}
k=3: {11, 97, 17519, next value has 60 digits, ...}
k=4: {41, 10093, 16703, 3520457, 591286703533, 6557470285501, 19740274219868101499, ...}
k=5: {709, 8273, 14323, 466004661037329684,1 298611126818977061133263, ...}
k=6: {29, 2683, 23945893, 1835540197, 4052735290427, 27777884012083, ...}
k=7: {37, 967, 2267, 127921, 226007, 62048869, 1131463777, 7540113804271826929, ...}
k=8: {27777538280521, 1409869790947669143312035590804646728957, ...}
k=9: {1033628323428189498226451492123369099, next value has 60 digits, ...}
k=10: {67, 5972304273877744135569337875802249660927, ...}
k=11: {79, 4478413, 19008291293, 61305228407581679, ...}
k=12: {6763, 1982269, 37886753582095837, 2791715456569622316696636389, ...}.
FORMULA
Primes in the hyperfibonacci number array of A136431, excluding the n=2 column (which contains every positive integer).
EXAMPLE
k=3: primes in A014162 = {A014162(3) = 11, A014162(6) = 97, A014162(16) = 17519}, no more through n = 30.
k=5: primes in A053739 = {A053739(7) = 709, A053739(10) = 8273, A053739(11) = 14323}, no more through n = 27.
MAPLE
A136431 := proc(k, n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k, x=0, n) ; end: A136338 := proc(amax) local a, k, n, a136431; a := [] ; for k from 1 do if A136431(k, 3) > amax then break ; fi ; for n from 3 do a136431 := A136431(k, n) ; if a136431 > amax then break ; fi ; if isprime(a136431) and not a136431 in a then a := [op(a), a136431] ; fi ; od: od: sort(a) ; end: A136338(20000) ; # R. J. Mathar, Apr 21 2008
PROG
(PARI) partsumfib(N, s=[], P=[])={ for( n=1+#s, N, s=concat(s, n+1); forstep( i=n, 1, -1, isprime( s[i]+= if( i>1, s[i-1], fibonacci(n+2) ) ) & P=setunion(P, [s[i]]) ); print(s); ); vecsort(eval(P))} \\ M. F. Hasler
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 12 2008
EXTENSIONS
Revised definition from N. J. A. Sloane, May 09 2008
More terms from R. J. Mathar, Apr 21 2008
STATUS
approved