login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136226
Column 0 of P^2 where triangle P = A136220; also equals column 1 of square array A136217.
4
1, 2, 8, 49, 414, 4529, 61369, 996815, 18931547, 412345688, 10143253814, 278322514093, 8432315243347, 279689506725247, 10083429764179733, 392703359698462567, 16433405366965493214, 735484032071079495354
OFFSET
0,2
FORMULA
Equals column 0 of triangle V = A136230, where column k of V = column 0 of P^(3k+2) such that column k of P^2 = column 0 of V^(k+1), for k>=0 and where P = A136220.
PROG
(PARI) /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat(1), U, PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))))); (P^2)[n+1, 1]}
CROSSREFS
Cf. A136225 (P^2), A136220 (P), A136230 (V); A136217.
Sequence in context: A088181 A058864 A332237 * A046165 A227264 A373865
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2008
STATUS
approved