login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136224
Column 3 of triangle A136220; also equals column 0 of U^4 where U = A136228.
4
1, 4, 36, 442, 6742, 122350, 2571620, 61426282, 1643616044, 48708655760, 1583981114700, 56090062706944, 2148733943483128, 88554674908328872, 3907197406833303644, 183780036631720987407, 9180785177015520963631
OFFSET
0,2
COMMENTS
P = A136220 is a triangular matrix where column k of P^3 equals column 0 of P^(3k+3) such that column 0 of P^3 equals column 0 of P shift one place left.
PROG
(PARI) {a(n)=local(P=Mat(1), U, PShR); if(n==0, 1, for(i=0, n+2, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#U, P[r, c], (U^c)[r-c+1, 1])))); P[n+4, 4])}
CROSSREFS
Cf. A136220 (P), A136228 (U); other columns of P: A136221, A136222, A136223.
Sequence in context: A052700 A167540 A374857 * A321963 A307903 A213596
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2007
STATUS
approved