login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 0 of P^2 where triangle P = A136220; also equals column 1 of square array A136217.
4

%I #3 Mar 30 2012 18:37:08

%S 1,2,8,49,414,4529,61369,996815,18931547,412345688,10143253814,

%T 278322514093,8432315243347,279689506725247,10083429764179733,

%U 392703359698462567,16433405366965493214,735484032071079495354

%N Column 0 of P^2 where triangle P = A136220; also equals column 1 of square array A136217.

%F Equals column 0 of triangle V = A136230, where column k of V = column 0 of P^(3k+2) such that column k of P^2 = column 0 of V^(k+1), for k>=0 and where P = A136220.

%o (PARI) /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,1]}

%Y Cf. A136225 (P^2), A136220 (P), A136230 (V); A136217.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 28 2008