login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307903
Coefficient of x^n in (1 + n*x + n*x^3)^n.
2
1, 1, 4, 36, 448, 6875, 124956, 2624293, 62537728, 1667191653, 49158400000, 1588285928306, 55796298391296, 2117279603738494, 86299754734693696, 3760031421065559375, 174374733095888748544, 8575617145497637681301, 445758339115421869936896, 24417549315693295193935516
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/3)} n^(n-2*k) * binomial(n,3*k) * binomial(3*k,k).
a(n) ~ exp(3*n^(1/3)/2^(2/3)) * n^(n - 1/6) / (2^(2/3)*sqrt(3*Pi)) * (1 - 79/(36 * 2^(1/3) * n^(1/3))). - Vaclav Kotesovec, May 05 2019
MATHEMATICA
Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^2)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
PROG
(PARI) {a(n) = polcoef((1+n*x+n*x^3)^n, n)}
(PARI) {a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n, 3*k)*binomial(3*k, k))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 05 2019
STATUS
approved