login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135447
Period 10: repeat [1, 2, 4, 8, 5, -1, -2, -4, -8, -5].
1
1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8, 5, -1, -2, -4, -8, -5, 1, 2, 4, 8
OFFSET
0,2
FORMULA
a(n+1) == 2*a(n) mod 11.
a(n) = (1/2 - (7*sqrt(5)/10))*cos(Pi*n/5) + (sqrt(2)/10)*(12*sqrt(5+sqrt(5))+7*sqrt(5-sqrt(5)))*sin(Pi*n/5) + (1/2 + (7*sqrt(5)/10))*cos(3*Pi*n/5) - (sqrt(2)/10)*(12*sqrt(5-sqrt(5)) - 7*sqrt(5+sqrt(5)))*sin(3*Pi*n/5). - Richard Choulet, Jan 04 2008
O.g.f.: (5*x^3+3*x^2+x+1)/(x^4-x^3+x^2-x+1). - R. J. Mathar, Jan 07 2008
a(n) = a(n-1)-a(n-2)+a(n-3)-a(n-4) for n>3. - Wesley Ivan Hurt, Sep 19 2015
MAPLE
A135447 := proc(n) op((n mod 10)+1, [1, 2, 4, 8, 5, -1, -2, -4, -8, -5]) ; end: seq(A135447(n), n=0..150) ; # R. J. Mathar, Feb 07 2009
MATHEMATICA
PadRight[{}, 100, {1, 2, 4, 8, 5, -1, -2, -4, -8, -5}] (* Vincenzo Librandi, Sep 19 2015 *)
LinearRecurrence[{1, -1, 1, -1}, {1, 2, 4, 8}, 100] (* Harvey P. Dale, Jun 03 2023 *)
PROG
(PARI) a(n)=[1, 2, 4, 8, 5, -1, -2, -4, -8, -5][n%10+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) &cat[[1, 2, 4, 8, 5, -1, -2, -4, -8, -5]: n in [0..10]]; // Vincenzo Librandi, Sep 19 2015
CROSSREFS
Sequence in context: A126215 A165617 A273170 * A163339 A364611 A092892
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Dec 14 2007
EXTENSIONS
More periods from R. J. Mathar, Feb 07 2009
STATUS
approved