login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135445
Number of fixed points of N_{2,2}(G_n).
0
1, 1, 2, 4, 10
OFFSET
1,3
COMMENTS
G_n are connected graphs of n nodes.
N_{m,n} is a mapping form k nodes graph to k nodes graph. N is for "Near" [Definition] For all pairs of distinct vertices x,y in G if n paths of length m exist between x and y then add an edge xy. The graph H which is made from G is represented as N_{m,n}(G).
EXAMPLE
Example: N_{1,1}(G)=G. Other definition of N_{2,3}: G={V,E_g}, H=N_{2,3}(G), H={V,E_h}. All x,y (x,y E V and -x=y and (Exist p,q,r -p=q and -p=r and -q=r and xp,xq,xr,py,qy,ry E E_g)) - E_h = E_g U {xy} where "E" means "element" and "-" means "not"
Fixed points of N_{2,2}: n = number of nodes. We count only connected graphs.
n=1
....o
n=2
....o_o
n=3
....o_o_o....o_o
.............|/
.............o
n=4
....o_o_o_o....o_o_o....o_o_o....o_o
.................|......|/.......|x|
.................o......o........o_o
n=5
....o_o_o_o_o....o_o_o_o....o_o_o_o....o_o_o......o_o_o_o
...................|........|/.........|...|........|/...
...................o........o..........o___o........o....
.....................................................
.........o_o_o.....o_o_o.....o_o_o......o_o_o....o_o_o
........../|.......|/|.......|/.........|x|......|x-x|
.........o.o.......o.o.......o_o........o_o......o___o
..................................................K_5
.........o_o....o_o
.........|.|....|/|
.........o_o....o_o
These graphs don't have the following subgraphs:
o_o ... o_o
| | ... |/|
o_o ... o_o
CROSSREFS
Sequence in context: A364637 A328837 A302349 * A098556 A159585 A130334
KEYWORD
nonn,uned
AUTHOR
Yasutoshi Kohmoto, Feb 18 2008
STATUS
approved