login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of fixed points of N_{2,2}(G_n).
0

%I #2 Apr 19 2016 01:16:09

%S 1,1,2,4,10

%N Number of fixed points of N_{2,2}(G_n).

%C G_n are connected graphs of n nodes.

%C N_{m,n} is a mapping form k nodes graph to k nodes graph. N is for "Near" [Definition] For all pairs of distinct vertices x,y in G if n paths of length m exist between x and y then add an edge xy. The graph H which is made from G is represented as N_{m,n}(G).

%e Example: N_{1,1}(G)=G. Other definition of N_{2,3}: G={V,E_g}, H=N_{2,3}(G), H={V,E_h}. All x,y (x,y E V and -x=y and (Exist p,q,r -p=q and -p=r and -q=r and xp,xq,xr,py,qy,ry E E_g)) - E_h = E_g U {xy} where "E" means "element" and "-" means "not"

%e Fixed points of N_{2,2}: n = number of nodes. We count only connected graphs.

%e n=1

%e ....o

%e n=2

%e ....o_o

%e n=3

%e ....o_o_o....o_o

%e .............|/

%e .............o

%e n=4

%e ....o_o_o_o....o_o_o....o_o_o....o_o

%e .................|......|/.......|x|

%e .................o......o........o_o

%e n=5

%e ....o_o_o_o_o....o_o_o_o....o_o_o_o....o_o_o......o_o_o_o

%e ...................|........|/.........|...|........|/...

%e ...................o........o..........o___o........o....

%e .....................................................

%e .........o_o_o.....o_o_o.....o_o_o......o_o_o....o_o_o

%e ........../|.......|/|.......|/.........|x|......|x-x|

%e .........o.o.......o.o.......o_o........o_o......o___o

%e ..................................................K_5

%e .........o_o....o_o

%e .........|.|....|/|

%e .........o_o....o_o

%e These graphs don't have the following subgraphs:

%e o_o ... o_o

%e | | ... |/|

%e o_o ... o_o

%K nonn,uned

%O 1,3

%A _Yasutoshi Kohmoto_, Feb 18 2008