login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134078
Expansion of (phi(-q) / phi(-q^2))^3 * phi(q^3)^5 / phi(-q^6) in powers of q where phi() is a Ramanujan theta function.
4
1, -6, 18, -34, 42, -36, 30, -48, 90, -118, 108, -72, 54, -84, 144, -204, 186, -108, 66, -120, 252, -272, 216, -144, 102, -186, 252, -370, 336, -180, 180, -192, 378, -408, 324, -288, 90, -228, 360, -476, 540, -252, 240, -264, 504, -708, 432, -288, 198, -342
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 12 sequence [ -6, 3, 4, 0, -6, -10, -6, 0, 4, 3, -6, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 8 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133739.
a(3*n + 2) = 18 * A134079(n). a(6*n + 5) = -36 * A098098(n).
EXAMPLE
G.f. = 1 - 6*x + 18*x^2 - 34*x^3 + 42*x^4 - 36*x^5 + 30*x^6 - 48*x^7 + 90*x^8 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, -q^2])^3*(EllipticTheta[3, 0, q^3]^5/EllipticTheta[3, 0, -q^6]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 22 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^4 + A)^3 * eta(x^6 + A)^23 / ( eta(x^2 + A)^9 * eta(x^3 + A)^10 * eta(x^12 + A)^9 ), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 06 2007
STATUS
approved