login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134079
Expansion of q^(-2/3) * c(-q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function.
5
1, -2, 5, -4, 8, -6, 14, -8, 14, -10, 21, -16, 20, -14, 28, -16, 31, -18, 40, -20, 32, -28, 42, -24, 38, -32, 62, -28, 44, -30, 56, -40, 57, -34, 70, -36, 72, -38, 70, -48, 62, -52, 85, -44, 68, -46, 112, -56, 74, -50, 100, -64, 80, -64, 98, -56, 108, -58, 124
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of ( f(x^3)^3 / f(x) )^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-2/3) * eta(q)^2 * eta(q^4)^2 * eta(q^6)^18 / (eta(q^2) * eta(q^3)* eta(q^12))^6 in powers of q.
Euler transform of period 12 sequence [ -2, 4, 4, 2, -2, -8, -2, 2, 4, 4, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (4/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263773.
a(n) = (-1)^n * A033686(n). 18 * a(n) = A134078(3*n + 2).
From Michael Somos, Feb 19 2015: (Start)
a(2*n + 1) = -2 * A098098(n).
Convolution square of A227696. (End)
Sum_{k=1..n} a(k) ~ (Pi^2/54) * n^2. - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = 1 - 2*x + 5*x^2 - 4*x^3 + 8*x^4 - 6*x^5 + 14*x^6 - 8*x^7 + 14*x^8 - ...
G.f. = q^2 - 2*q^5 + 5*q^8 - 4*q^11 + 8*q^14 - 6*q^17 + 14*q^20 - 8*q^23 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3]^3 / QPochhammer[ -x])^2, {x, 0, n}]; (* Michael Somos, Feb 19 2015 *)
a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[ 1, 3 n + 2] / 3]; (* Michael Somos, Feb 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^9 / ( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) )^3 )^2, n))};
(PARI) {a(n) = if( n<0, 0, (-1)^n * sigma(3*n + 2) / 3)}; /* Michael Somos, Feb 19 2015 */
KEYWORD
sign
AUTHOR
Michael Somos, Oct 06 2007
STATUS
approved