login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134077
Expansion of psi(x) * phi(-x)^3 / chi(-x^3)^3 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
8
1, -5, 6, 8, -23, 12, 14, -30, 18, 20, -40, 24, 31, -77, 30, 32, -60, 48, 38, -70, 42, 44, -138, 48, 57, -90, 54, 72, -100, 60, 62, -184, 84, 68, -120, 72, 74, -155, 96, 80, -239, 84, 108, -150, 90, 112, -160, 120, 98, -276, 102, 104, -240, 108, 110, -190, 114
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x)^4 - 9 * x * psi(x^3)^4 in powers of x where psi() is a Ramanujan theta function.
Expansion of x^(-1/2) * (b(x)^3 * c(x^2)^2 / (3 * c(x)))^(1/2) in powers of x where b(), c() are cubic AGM functions.
Expansion of q^(-1/2) * eta(q)^5 * eta(q^6)^3 / (eta(q^2) * eta(q^3)^3) in powers of q.
Euler transform of period 6 sequence [-5, -4, -2, -4, -5, -4, ...].
a(n) = b(2*n+1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1)/(p - 1) if p>5.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A124449
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^2 * (1 - x^k + x^(2*k))^3.
G.f.: Sum_{k>0} k * f(x^k) - 9 * k * f(x^(3*k)) where f(x) = x * (1 - x) / ((1 + x) * (1 + x^2)).
G.f.: f(x) - 3 * f(x^2) - 9 * f(x^3) + 2 * f(x^4) + 27 * f(x^6) - 18 * f(x^12) where f() is the g.f. of A000203.
a(n) = A131944(2*n + 1) = A118271(2*n + 1). a(3*n + 2) = 6 * A098098(n).
EXAMPLE
G.f. = 1 - 5*x + 6*x^2 + 8*x^3 - 23*x^4 + 12*x^5 + 14*x^6 - 30*x^7 + 18*x^8 + ...
G.f. = q - 5*q^3 + 6*q^5 + 8*q^7 - 23*q^9 + 12*q^11 + 14*q^13 - 30*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x]^3 QPochhammer[ -x^3, x^3]^3, {x, 0, n}]; (* Michael Somos, Oct 27 2015 *)
a[ n_] := SeriesCoefficient[ (1/16) x^(-1/2) (EllipticTheta[ 2, 0, x^(1/2)]^4 - 9 EllipticTheta[ 2, 0, x^(3/2)]^4), {x, 0, n}]; (* Michael Somos, Oct 27 2015 *)
PROG
(PARI) {a(n) = my(A); if ( n<0, 0, A = x * O(x^n) ; polcoeff( eta(x + A)^5 * eta(x^6 + A)^3 / ( eta(x^2 + A) * eta(x^3 + A)^3 ), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 06 2007
STATUS
approved