login
A131038
a(1)=1. For n >= 2, Sum_{k|n, neither (k+1) nor (k-1) divides n} a(k) = 0. (The sum is over the isolated divisors of n. A divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.).
1
1, 0, -1, 0, -1, 0, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, -1, 1, 1, -1, 0, 0, 1, 0, 0, -1, -2, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -2, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, 1, -1, 0, -1
OFFSET
1,30
COMMENTS
The value of a(2) is arbitrary. If a(2) is any number and the rest of the sequence remains unchanged, then the sum over isolated divisors still always equals 0 for all n >= 2.
LINKS
EXAMPLE
The positive divisors of 30 are 1,2,3,5,6,10,15,30. Of these, 1,2,3 are adjacent and 5 and 6 are adjacent. So the isolated divisors of 30 are 10,15,30. Therefore a(30) is such that a(10)+a(15)+a(30) = 1 +1 +a(30) =0. So a(30) = -2.
PROG
(PARI) A131038(n) = if(n<=2, 2-n, -((n%2)+sumdiv(n, d, if((d<n)&&(d>2)&&(n%(d-1))&&(n%(d+1)), A131038(d), 0)))); \\ Antti Karttunen, Apr 06 2021
CROSSREFS
Sequence in context: A016427 A326170 A243841 * A016353 A016398 A024359
KEYWORD
sign
AUTHOR
Leroy Quet, Sep 23 2007
EXTENSIONS
Extended by Ray Chandler, Jun 25 2008
STATUS
approved