OFFSET
1,1
COMMENTS
Primes of the form (Sum_{i=k..k+3}Sum_{j=i+1..k+4}prime(i)*prime(j))/2.
Primes of the form a/2 where a is the coefficient of x^3 of the polynomial Prod_{j=0,4}(x-prime(k+j)) for some k.
MATHEMATICA
a = {}; Do[If[PrimeQ[(Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x] Prime[x + 3] + Prime[x] Prime[x + 4] + Prime[x + 1] Prime[x + 2] + Prime[x + 1] Prime[x + 3] + Prime[x + 1] Prime[x + 4] + Prime[x + 2] Prime[x + 3] + Prime[x + 2] Prime[x + 4] + Prime[x + 3] Prime[x + 4])/2], AppendTo[a, (Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x] Prime[x + 3] + Prime[x] Prime[x + 4] + Prime[x + 1] Prime[x + 2] + Prime[x + 1] Prime[x + 3] + Prime[x + 1] Prime[x + 4] + Prime[x + 2] Prime[x + 3] + Prime[x + 2] Prime[x + 4] + Prime[x + 3] Prime[x + 4])/2]], {x, 1, 1000}]; a
PROG
(PARI) 1. {m=235; k=4; for(n=1, m, a=sum(i=n, n+k-1, sum(j=i+1, n+k, prime(i)*prime(j))); if(isprime(b=a/2), print1(b, ", ")))} 2. {m=235; k=4; for(n=1, m, a=polcoeff(prod(j=0, k, (x-prime(n+j))), 3); if(isprime(b=a/2), print1(b, ", ")))} - Klaus Brockhaus, Jan 21 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 21 2007
STATUS
approved