OFFSET
1,1
COMMENTS
a(n) = absolute value of the coefficient of x^3 of the polynomial Prod_{j=0,4}(x-prime(n+j)) of degree 5; the roots of this polynomial are prime(n), ..., prime(n+4); cf. Vieta's formulas.
All terms are even.
LINKS
Eric Weisstein's World of Mathematics, Vieta's Formulas
MATHEMATICA
Table[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x] Prime[x + 3] + Prime[x] Prime[x + 4] + Prime[x + 1] Prime[x + 2] + Prime[x + 1] Prime[x + 3] + Prime[x + 1] Prime[x + 4] + Prime[x + 2] Prime[x + 3] + Prime[x + 2] Prime[x + 4] + Prime[x + 3] Prime[x + 4], {x, 1, 100}]
PROG
(PARI) 1. {m=34; k=4; for(n=1, m, print1(sum(i=n, n+k-1, sum(j=i+1, n+k, prime(i)*prime(j))), ", "))} 2. {m=34; k=4; for(n=1, m, print1(abs(polcoeff(prod(j=0, k, (x-prime(n+j))), 3)), ", "))} - Klaus Brockhaus, Jan 21 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 21 2007
STATUS
approved