login
A127346
Primes in A127345.
10
31, 71, 167, 311, 1151, 3119, 4871, 5711, 6791, 14831, 24071, 33911, 60167, 79031, 101159, 106367, 115631, 158231, 235751, 259751, 366791, 402551, 455471, 565919, 635711, 644951, 1124831, 1347971, 1510799, 1547927, 1743419, 1851671, 2048471
OFFSET
1,1
COMMENTS
Primes of the form prime(k)*prime(k+1) + prime(k)*prime(k+2) + prime(k+1)*prime(k+2).
A prime number n is in the sequence if for some k it is the coefficient of x^1 of the polynomial Product_{j=0..2} (x-prime(k+j)); the roots of this polynomial are prime(k), ..., prime(k+2).
FORMULA
a(n) = A127345(A204231(n)). - Zak Seidov, Jan 13 2012
MATHEMATICA
b = {}; a = {}; Do[If[PrimeQ[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[a, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[b, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]]], {x, 1, 100}]; Print[a] (* Artur Jasinski, Jan 11 2007 *)
s[li_] := li[[1]]*(li[[2]]+li[[3]])+li[[2]]*li[[3]]; Select[(s[#]&/@Partition[Prime[Range[100]], 3, 1]), PrimeQ] (* Zak Seidov, Jan 13 2012 *)
PROG
(PARI) {m=143; k=2; for(n=1, m, a=sum(i=n, n+k-1, sum(j=i+1, n+k, prime(i)*prime(j))); if(isprime(a), print1(a, ", ")))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) {m=143; k=2; for(n=1, m, a=polcoeff(prod(j=0, k, (x-prime(n+j))), 1); if(isprime(a), print1(a, ", ")))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) p=2; q=3; forprime(r=5, 1e3, if(isprime(t=p*q+p*r+q*r), print1(t", ")); p=q; q=r) \\ Charles R Greathouse IV, Jan 13 2012
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jan 21 2007
STATUS
approved