login
A126093
Inverse binomial matrix applied to A110877.
28
1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
OFFSET
0,5
COMMENTS
Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
LINKS
Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths, Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
FORMULA
Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007
EXAMPLE
Triangle begins:
1;
0, 1;
1, 2, 1;
2, 6, 4, 1;
6, 18, 15, 6, 1;
18, 57, 54, 28, 8, 1;
57, 186, 193, 118, 45, 10, 1;
186, 622, 690, 474, 218, 66, 12, 1;
622, 2120, 2476, 1856, 976, 362, 91, 14, 1;
2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
0, 1;
1, 2, 1;
0, 1, 2, 1;
0, 0, 1, 2, 1;
0, 0, 0, 1, 2, 1;
0, 0, 0, 0, 1, 2, 1;
0, 0, 0, 0, 0, 1, 2, 1;
0, 0, 0, 0, 0, 0, 1, 2, 1;
0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- Philippe Deléham, Nov 07 2011
MATHEMATICA
T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1, 0, x, y] + T[n-1, 1, x, y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1, k-1, x, y] + y*T[n-1, k, x, y] + T[n-1, k+1, x, y]]; Table[T[n, k, 0, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
PROG
(Sage)
@CachedFunction
def T(n, k, x, y):
if (k<0 or k>n): return 0
elif (n==0 and k==0): return 1
elif (k==0): return x*T(n-1, 0, x, y) + T(n-1, 1, x, y)
else: return T(n-1, k-1, x, y) + y*T(n-1, k, x, y) + T(n-1, k+1, x, y)
[[T(n, k, 0, 2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020
CROSSREFS
Sequence in context: A121341 A241737 A174959 * A065279 A343383 A151962
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 03 2007
STATUS
approved