login
A125906
Riordan array (1/(1 + 5*x + x^2), x/(1 + 5*x + x^2))^(-1); inverse of Riordan array A123967.
28
1, 5, 1, 26, 10, 1, 140, 77, 15, 1, 777, 540, 153, 20, 1, 4425, 3630, 1325, 254, 25, 1, 25755, 23900, 10509, 2620, 380, 30, 1, 152675, 155764, 79065, 23989, 4550, 531, 35, 1, 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1
OFFSET
0,2
COMMENTS
T(0)=A053121, T(1)=A064189, T(2)=A039598, T(3)=A091965, T(4)=A052179.
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and five types of steps H=(1,0); example: T(3,1)=77 because we have UDU, UUD, 25 HHU paths, 25 HUH paths and 25 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 terms in 1,2,3,...). Example: 7^3 = 343 = (140, 77, 15, 1) dot (1, 2, 3, 4) = (140 + 154 + 45 + 4) = 343. - Gary W. Adamson, Jun 17 2011
A subset of the "family of triangles" (Deleham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011
Riordan array (f(x), x*f(x)) where f(x) is the o.g.f. of A182401. - Philippe Deléham, Mar 04 2013
FORMULA
Triangle T(5) where T(x) is defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1). Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0). Sum_{k=0..n} T(n,k) = A122898(n).
Sum_{k=0..n} T(n,k)*(k+1) = 7^n. - Philippe Deléham, Mar 26 2007
T(n,0) = A182401(n). - Philippe Deléham, Mar 04 2013
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 5*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022
EXAMPLE
Triangle begins
1;
5, 1;
26, 10, 1;
140, 77, 15, 1;
777, 540, 153, 20, 1;
4425, 3630, 1325, 254, 25, 1;
25755, 23900, 10509, 2620, 380, 30, 1;
152675, 155764, 79065, 23989, 4550, 531, 35, 1;
919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1;
From Philippe Deléham, Nov 07 2011: (Start)
Production matrix begins
5, 1;
1, 5, 1,;
0, 1, 5, 1;
0, 0, 1, 5, 1;
0, 0, 0, 1, 5, 1;
0, 0, 0, 0, 1, 5, 1;
0, 0, 0, 0, 0, 1, 5, 1;
0, 0, 0, 0, 0, 0, 1, 5, 1;
0, 0, 0, 0, 0, 0, 0, 1, 5, 1; (End)
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 5, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
CROSSREFS
Cf. A182401.
Sequence in context: A096645 A376582 A140713 * A146414 A146374 A188647
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Feb 04 2007
STATUS
approved