login
A125750
A Moessner triangle using (1, 3, 5, ...).
3
1, 3, 5, 10, 19, 11, 42, 89, 64, 19, 216, 498, 415, 160, 29, 1320, 3254, 3023, 1385, 335, 41, 9360, 24372, 24640, 12803, 3745, 623, 55, 75600, 206100, 223116, 127799, 42938, 8750, 1064, 71, 685440, 1943568, 2227276, 1380076, 516201, 122010, 18354, 1704
OFFSET
1,2
COMMENTS
Right border of the triangle = A028387, left border = A007680.
REFERENCES
J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, pp. 63-64.
LINKS
G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
R. Krebbers, L. Parlant, and A. Silva, Moessner's theorem: an exercise in coinductive reasoning in Coq, Theory and practice of formal methods, 309-324, Lecture Notes in Comput. Sci., 9660, Springer, 2016.
Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
Ivan Paasche, Ein neuer Beweis des Moessnerschen Satzes S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 1-5 (1953). [Two years are listed at the beginning of the journal issue.]
Ivan Paasche, Beweis des Moessnerschen Satzes mittels linearer Transformationen, Arch. Math. (Basel) 6 (1955), 194-199.
Ivan Paasche, Eine Verallgemeinerung des Moessnerschen Satzes, Compositio Math. 12 (1956), 263-270.
Hans Salié, Bemerkung zu einem Satz von A. Moessner, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 7-11 (1953). [Two years are listed at the beginning of the journal issue.]
Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
FORMULA
Using "Moessner's Magic" (Conway and Guy, pp. 63-64; cf. A125714), we circle the 1, 3, 6, 10, ...(-th) terms in the sequence (1, 3, 5, 7, ...) and take partial sums of the remaining terms, making row 2. Circle the terms in row 2 one place offset to the left of row 1 terms, then take partial sums. Continue with analogous operations for succeeding rows. The triangle = leftmost circled terms in each row.
EXAMPLE
Circling the 1, 3, 6, ...(-th) terms in the sequence (1, 3, 5, 7, ...), we get A018387: (1, 5, 11, 19, 29, ...). Taking partial sums of the remaining terms, we get (3, 10, 19, 32, ...) in row 2 and we circle 3 and 19. In row 3 we circle the 10.
First few rows of the triangle are:
1;
3, 5;
10, 19, 11;
42, 89, 64, 19;
216, 498, 415, 160, 29;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Dec 06 2006
EXTENSIONS
More terms from Joshua Zucker, Jun 17 2007
STATUS
approved