login
A001445
a(n) = (2^n + 2^[ n/2 ] )/2.
6
3, 5, 10, 18, 36, 68, 136, 264, 528, 1040, 2080, 4128, 8256, 16448, 32896, 65664, 131328, 262400, 524800, 1049088, 2098176, 4195328, 8390656, 16779264, 33558528, 67112960, 134225920, 268443648
OFFSET
2,1
COMMENTS
a(n) is union of A007582(n-1) and A164051(n). - Jaroslav Krizek, Aug 14 2009
FORMULA
a(n) = (1/2)*A005418(n+2).
G.f.: x^2*(3-x-6*x^2)/((1-2*x)*(1-2*x^2)).
G.f.: 3*G(0) where G(k) = 1 + x*(4*2^k + 1)*(1 + 2*x*G(k+1))/(1 + 2*2^k). - Sergei N. Gladkovskii, Dec 12 2011 [Edited by Michael Somos, Sep 09 2013]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) for n > 4. - Chai Wah Wu, Sep 10 2020
EXAMPLE
G.f. = 3*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 36*x^6 + 68*x^7 + 136*x^8 + ...
MAPLE
f := n->(2^n+2^floor(n/2))/2;
MATHEMATICA
Table[(2^n + 2^(Floor[n/2]))/2, {n, 2, 50}] (* G. C. Greubel, Sep 08 2017 *)
LinearRecurrence[{2, 2, -4}, {3, 5, 10}, 30] (* Harvey P. Dale, Sep 12 2021 *)
PROG
(PARI) for(n=2, 50, print1((2^n + 2^(n\2))/2, ", ")) \\ G. C. Greubel, Sep 08 2017
CROSSREFS
Sequence in context: A318248 A107232 A134522 * A192860 A125750 A018168
KEYWORD
nonn
STATUS
approved