login
A320921
Number of connected graphical partitions of 2n.
24
1, 1, 1, 3, 5, 10, 19, 35, 60
OFFSET
0,4
COMMENTS
An integer partition is connected and graphical if it comprises the multiset of vertex-degrees of some connected simple graph.
EXAMPLE
The a(1) = 1 through a(6) = 19 connected graphical partitions:
(11) (211) (222) (2222) (3322) (3333)
(2211) (3221) (22222) (33222)
(3111) (22211) (32221) (33321)
(32111) (33211) (42222)
(41111) (42211) (43221)
(222211) (222222)
(322111) (322221)
(331111) (332211)
(421111) (333111)
(511111) (422211)
(432111)
(522111)
(2222211)
(3222111)
(3321111)
(4221111)
(4311111)
(5211111)
(6111111)
MATHEMATICA
prptns[m_]:=Union[Sort/@If[Length[m]==0, {{}}, Join@@Table[Prepend[#, m[[ipr]]]&/@prptns[Delete[m, List/@ipr]], {ipr, Select[Prepend[{#}, 1]&/@Select[Range[2, Length[m]], m[[#]]>m[[#-1]]&], UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[strnorm[2*n], Select[prptns[#], And[UnsameQ@@#, Length[csm[#]]==1]&]!={}&]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 24 2018
STATUS
approved