login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116718
Number of permutations of length n which avoid the patterns 321, 1342, 3124.
0
1, 1, 2, 5, 12, 22, 37, 60, 96, 153, 244, 390, 625, 1004, 1616, 2605, 4204, 6790, 10973, 17740, 28688, 46401, 75060, 121430, 196457, 317852, 514272, 832085, 1346316, 2178358, 3524629, 5702940, 9227520, 14930409, 24157876, 39088230, 63246049, 102334220
OFFSET
0,3
FORMULA
G.f.: 1+(x+1)*(2*x^4+x^3-3*x^2+2*x-1)*x/((x-1)^2*(x^2+x-1)).
a(0)=1, a(1)=1, a(2)=2, a(3)=5, a(4)=12, a(5)=22, a(6)=37, a(n)=3*a(n-1)- 2*a(n-2)- a(n-3)+a (n-4). - Harvey P. Dale, Oct 21 2011
a(n) = F(n+3) + 2*n - 9 for n>2, where F is A000045. - Jason Kimberley, Nov 22 2013
For n>2, a(n) = (1+2/sqrt(5))*((1+sqrt(5))/2)^n + (1-2/sqrt(5))*((1-sqrt(5))/2)^n + 2*n - 9. - Vaclav Kotesovec, Dec 11 2013
MATHEMATICA
Rest[CoefficientList[Series[1+((x+1)(2x^4+x^3-3x^2+2x-1)x)/((x-1)^2 (x^2+ x-1)), {x, 0, 50}], x]] (* or *) Join[{1, 1, 2}, LinearRecurrence[{3, -2, -1, 1}, {5, 12, 22, 37}, 50]] (* Harvey P. Dale, Oct 21 2011 *)
CROSSREFS
Sequence in context: A116727 A116729 A048840 * A026035 A215183 A086734
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved