login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116717
Number of permutations of length n which avoid the patterns 231, 1423, 3214.
1
1, 2, 5, 12, 26, 52, 98, 177, 310, 531, 895, 1491, 2463, 4044, 6611, 10774, 17520, 28446, 46136, 74771, 121116, 196117, 317485, 513877, 831661, 1345862, 2177873, 3524112, 5702390, 9226936, 14929790, 24157221, 39087538, 63245319, 102333451, 165579399, 267913515
OFFSET
1,2
LINKS
Michael Dairyko, Lara Pudwell, Samantha Tyner, Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
FORMULA
G.f.: -x*(x^4-x^3-2*x^2+2*x-1) / ((x^2+x-1)*(x-1)^3).
a(n) = A000045(n+5) - A000124(n+2). - Charlie Marion and Lara Pudwell, Jan 15 2014
From Colin Barker, Oct 20 2017: (Start)
a(n) = -3 + (2^(-1- n)*((1-sqrt(5))^n*(-11+5*sqrt(5)) + (1+sqrt(5))^n*(11+5*sqrt(5)))) / sqrt(5) - n - (1 + n)*(2 + n)/2.
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n>5.
(End)
a(n) = 1 + Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j-1} Fibonacci(i). - Ehren Metcalfe, Oct 22 2017
MATHEMATICA
LinearRecurrence[{4, -5, 1, 2, -1}, {1, 2, 5, 12, 26}, 40] (* Vincenzo Librandi, Oct 22 2017 *)
PROG
(PARI) Vec(x*(1 - 2*x + 2*x^2 + x^3 - x^4) / ((1 - x)^3*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Oct 20 2017
(Magma) I:=[1, 2, 5, 12, 26]; [n le 5 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+2*Self(n-4)-Self(n-5): n in [1..40]]; // Vincenzo Librandi, Oct 22 2017
CROSSREFS
Sequence in context: A132977 A027927 A221948 * A116725 A193263 A221949
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved