login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048840
Expansion of (1 - x + 2*x^2 + 2*x^3 - x^4 - x^5)/(1-x)^3.
3
1, 2, 5, 12, 22, 34, 48, 64, 82, 102, 124, 148, 174, 202, 232, 264, 298, 334, 372, 412, 454, 498, 544, 592, 642, 694, 748, 804, 862, 922, 984, 1048, 1114, 1182, 1252, 1324, 1398, 1474, 1552, 1632, 1714, 1798, 1884, 1972, 2062, 2154, 2248, 2344, 2442, 2542
OFFSET
0,2
COMMENTS
Also, number of permutations of length n+1 which avoid the patterns 321, 1342, 2134. - Lara Pudwell, Feb 26 2006
FORMULA
For n > 2, a(n) = n^2 + 3n - 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. - Colin Barker, May 03 2019
MATHEMATICA
CoefficientList[Series[(1-x+2*x^2+2*x^3-x^4-x^5)/(1-x)^3, {x, 0, 60}], x] (* or *) Join[{1, 2, 5}, Table[n^2+3*n-6, {n, 3, 60}]] (* or *) Join[{1, 2, 5}, LinearRecurrence[{3, -3, 1}, {12, 22, 34}, 58]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
PROG
(PARI) Vec((1-x+2*x^2+2*x^3-x^4-x^5)/(1-x)^3 + O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012, corrected by Colin Barker, May 03 2019
CROSSREFS
Sequence in context: A368969 A116727 A116729 * A116718 A026035 A215183
KEYWORD
nonn,easy
STATUS
approved