OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..12782 (terms 0..5000 from Alois P. Heinz)
FORMULA
a(n) = A276427(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).
EXAMPLE
a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(7) = 9 partitions:
(2) (3) (4) (5) (6) (7)
(11) (111) (211) (32) (33) (43)
(1111) (311) (42) (52)
(2111) (222) (511)
(11111) (411) (3211)
(3111) (4111)
(21111) (31111)
(111111) (211111)
(1111111)
(End)
MAPLE
g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)
Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]!=i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 19 2016
STATUS
approved