login
A276429
Number of partitions of n containing no part i of multiplicity i.
18
1, 0, 2, 2, 3, 5, 8, 9, 16, 19, 29, 36, 53, 65, 92, 115, 154, 195, 257, 318, 419, 516, 663, 821, 1039, 1277, 1606, 1963, 2441, 2978, 3675, 4454, 5469, 6603, 8043, 9688, 11732, 14066, 16963, 20260, 24310, 28953, 34586, 41047, 48857, 57802, 68528, 80862, 95534, 112388, 132391
OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..12782 (terms 0..5000 from Alois P. Heinz)
FORMULA
a(n) = A276427(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).
EXAMPLE
a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(7) = 9 partitions:
(2) (3) (4) (5) (6) (7)
(11) (111) (211) (32) (33) (43)
(1111) (311) (42) (52)
(2111) (222) (511)
(11111) (411) (3211)
(3111) (4111)
(21111) (31111)
(111111) (211111)
(1111111)
(End)
MAPLE
g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)
Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]!=i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 19 2016
STATUS
approved