login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113954
Expansion of (1-2x^2)/((1-2x)(1+x)^2).
6
1, 0, 1, 2, 3, 8, 13, 30, 55, 116, 225, 458, 907, 1824, 3637, 7286, 14559, 29132, 58249, 116514, 233011, 466040, 932061, 1864142, 3728263, 7456548, 14913073, 29826170, 59652315, 119304656, 238609285, 477218598, 954437167, 1908874364, 3817748697
OFFSET
0,4
COMMENTS
Inverse binomial transform of phi(phi(3^n)).
FORMULA
a(n)=3a(n-2)+2a(n-3); a(n)=2^(n+1)/9+(7-3n)(-1)^n/9; a(n)=a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)phi(phi(3^k))}; a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)(2*3^k/9+C(1, k)/3+4*C(0, k)/9)}; a(n)=sum{k=0..n, J(n-k+1)((-1)^(k+1)-2C(1, k)+4C(0, k))} where J(n)=A001045(n).
MATHEMATICA
CoefficientList[Series[(1-2x^2)/((1-2x)(1+x)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 3, 2}, {1, 0, 1}, 40] (* Harvey P. Dale, Aug 20 2015 *)
CROSSREFS
Cf. A103196.
Sequence in context: A318621 A045692 A103196 * A191393 A025082 A317911
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 09 2005
STATUS
approved