Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 20 2015 14:00:28
%S 1,0,1,2,3,8,13,30,55,116,225,458,907,1824,3637,7286,14559,29132,
%T 58249,116514,233011,466040,932061,1864142,3728263,7456548,14913073,
%U 29826170,59652315,119304656,238609285,477218598,954437167,1908874364,3817748697
%N Expansion of (1-2x^2)/((1-2x)(1+x)^2).
%C Inverse binomial transform of phi(phi(3^n)).
%H Harvey P. Dale, <a href="/A113954/b113954.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,2).
%F a(n)=3a(n-2)+2a(n-3); a(n)=2^(n+1)/9+(7-3n)(-1)^n/9; a(n)=a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)phi(phi(3^k))}; a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)(2*3^k/9+C(1, k)/3+4*C(0, k)/9)}; a(n)=sum{k=0..n, J(n-k+1)((-1)^(k+1)-2C(1, k)+4C(0, k))} where J(n)=A001045(n).
%t CoefficientList[Series[(1-2x^2)/((1-2x)(1+x)^2),{x,0,40}],x] (* or *) LinearRecurrence[{0,3,2},{1,0,1},40] (* _Harvey P. Dale_, Aug 20 2015 *)
%Y Cf. A103196.
%K easy,nonn
%O 0,4
%A _Paul Barry_, Nov 09 2005