login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113956
Expansion of (1/((1-4x)c(x)))/(1-x^2c(x)/sqrt(1-4x)), c(x) the g.f. of A000108.
1
1, 3, 12, 48, 194, 787, 3199, 13017, 52997, 215831, 879076, 3580511, 14582842, 59388280, 241829963, 984609111, 4008282780, 16315179752, 66399357417, 270193396769, 1099323033137, 4472155924094, 18190769442979, 73982564102230
OFFSET
0,2
COMMENTS
Diagonal sums of A113955.
FORMULA
G.f.: (1+sqrt(1-4x))/(sqrt(1-4x)(sqrt(1-4x)(x+2)-x)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, C(j, j-k)C(2n-2k, n-k-j)}}.
Conjecture D-finite with recurrence: n*a(n) +2*(-5*n+4)*a(n-1) +(27*n-46)*a(n-2) +(5*n-2)*a(n-3) +(-57*n+188)*a(n-4) +2*(-21*n+83)*a(n-5) +4*(-2*n+9)*a(n-6)=0. - R. J. Mathar, Jan 24 2020
MATHEMATICA
CoefficientList[Series[(1+Sqrt[1-4x])/(2-x(7+Sqrt[1-4x]+4x)), {x, 0, 30}], x] (* Harvey P. Dale, Feb 10 2015 *)
CROSSREFS
Sequence in context: A077828 A002001 A164346 * A323261 A103943 A283679
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 09 2005
STATUS
approved