login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111169
Number of top simplices in a minimal triangulation of the permutohedron.
1
1, 1, 4, 34, 488, 10512, 316224, 12649104, 649094752, 41568338240, 3249938294656, 304670810708736, 33736950933298688, 4356802177994094080, 649031480783423250432, 110477935456564190447616, 21310050396755400705088512, 4623833701942527407032074240
OFFSET
0,3
COMMENTS
The analogous sequence with associahedron in place of permutohedron is (n+1)^{n-1}.
This also counts maximal chains in the shard intersection orders of type A, see Theorem 1.3 in Reading reference. - F. Chapoton, Apr 29 2015
The ordinary generating series may be Gevrey of order 2, i.e., the coefficients may be bounded by A*B^n*(n!)^2 for some constants A and B. - F. Chapoton, Jul 07 2023
LINKS
Jean-Louis Loday, More information
Jean-Louis Loday, Parking functions and triangulation of the associahedron, arXiv:math/0510380 [math.AT], 2005.
N. Reading, Noncrossing partitions and the shard intersection order, arXiv:0909.3288 [math.CO], 2009.
N. Reading, Noncrossing partitions and the shard intersection order, J. Algebraic Combin. 33 (2011), no. 4.
FORMULA
a(n) = Sum_{m=0..n-1} (binomial(n+1, m+1) - 1)*binomial(n-1, m)*a(m)*a(n-m-1). - Robert G. Wilson v, Oct 31 2005
MAPLE
function y=binom(n, p); y=1; for j = 0 : p-1; y=y*(n-j); end; for j = 1 : p; y=y/j; end; format long; nmax = 14; mm=nmax+1; zp=zeros(mm, 1); zp(1:1) = 1; for n = 1 : nmax; z=0; for p = 0 : n-1; z=z+ (binom(n+1, p+1)-1) * binom(n-1, p) * zp(p+1:p+1) * zp(n-p:n-p); end; zp(n+1:n+1)=z; z; end; n, z
MATHEMATICA
f[0] = 1; f[n_] := Sum[(Binomial[n + 1, m + 1] - 1)Binomial[n - 1, m]f[m]f[n - m - 1], {m, 0, n - 1}]; Table[f[n], {n, 0, 16}] (* Robert G. Wilson v, Oct 31 2005 *)
PROG
(PARI) a111169=[1]; A111169(n)={n<3&&return(n^n); global(a111169); while(n>m=#a111169, a111169=concat(a111169, sum(k=1, m-1, (binomial(m+2, k+1)-1)*binomial(m, k)*a111169[k]*a111169[m-k], 2*(m+1)*a111169[m]))); a111169[n]} \\ M. F. Hasler, May 02 2015
(Sage)
@cached_function
def a(n):
if n == 0:
return 1
return sum((binomial(n + 1, m + 1) - 1) * binomial(n - 1, m)
* a(m) * a(n - m - 1) for m in range(n))
# F. Chapoton, Jul 07 2023
CROSSREFS
Sequence in context: A156325 A248654 A336495 * A274244 A002105 A198717
KEYWORD
easy,nonn
AUTHOR
Jean-Louis Loday (loday(AT)math.u-strasbg.fr), Oct 21 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 31 2005
STATUS
approved