login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336495
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).
4
1, 1, 4, 34, 484, 9946, 270314, 9189776, 376223992, 18046839982, 993655820512, 61803730636506, 4287521490060780, 328324625277864008, 27514775912958768464, 2505202120094546731584, 246288599061132553970160, 26004541628560046316399382, 2935176211106696031739535696
OFFSET
0,3
COMMENTS
Number of Sylvester classes of n-packed words of degree n.
LINKS
FORMULA
a(n) = ( (-1)^n / (n^2+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(n^2+1,k) * binomial((n+1)*n-k,n-k).
a(n) = (-1)^n*binomial(1 + n^2, n)*hypergeom[-n, 1 + n^2, 2 + (n - 1)*n, 2] / (1 + n^2). - Peter Luschny, Jul 26 2020
a(n) ~ exp(n + 3/2) * n^(n - 5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Jul 31 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial((n+1)*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 08 2023
MATHEMATICA
a[n_] := ((-1)^n Binomial[1 + n^2, n] Hypergeometric2F1[-n, 1 + n^2, 2 + (n - 1) n, 2]) / (1 + n^2); Array[a, 19, 0] (* Peter Luschny, Jul 26 2020 *)
PROG
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(n^2+k+1, n)/(n^2+k+1));
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(n^2+1, k)*binomial((n+1)*n-k, n-k))/(n^2+1);
CROSSREFS
Main diagonal of A336573.
Sequence in context: A198976 A156325 A248654 * A111169 A274244 A002105
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 26 2020
STATUS
approved