login
A108438
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having abscissa of the first peak equal to k.
0
1, 1, 4, 3, 2, 1, 24, 18, 13, 7, 3, 1, 172, 130, 96, 55, 28, 12, 4, 1, 1360, 1034, 772, 458, 249, 119, 50, 18, 5, 1, 11444, 8738, 6568, 3982, 2244, 1137, 526, 219, 80, 25, 6, 1, 100520, 76994, 58140, 35770, 20624, 10836, 5293, 2383, 981, 365, 119, 33, 7, 1
OFFSET
1,3
COMMENTS
Row n contains 2n terms. Row sums yield A027307. T(n,1)=A032349(n-1).
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f.: G = G(t,z) = 1/(1-t^2zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
EXAMPLE
T(2,3) = 2 because we have Uuddd and uUddd.
Triangle begins:
1,1;
4,3,2,1;
24,18,13,7,3,1;
172,130,96,55,28,12,4,1;
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-t^2*z*A-t*z*A^2)-1: Gserz:=simplify(series(G, z=0, 10)): for n from 1 to 8 do P[n]:=sort(coeff(Gserz, z^n)) od: > for n from 1 to 8 do seq(coeff(P[n], t^k), k=1..2*n) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A129154 A055115 A294280 * A347738 A082504 A237524
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 04 2005
STATUS
approved